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Abstract. Hydrometric monitoring of small water bodies (1-10 ha) remains rare, due to their limited size and large numbers,

preventing accurate assessments of their agricultural potential or their cumulative influence in watershed hydrology. Landsat

imagery has shown its potential to support mapping of small water bodies but the influence of their limited surface areas,

vegetation growth and rapid flood dynamics on long term surface water monitoring remains unquantified. A semi-automated

method is developed here to assess and optimise the potential of multi-sensor Landsat time series to monitor surface water5

extent and mean water availability in these smallest water bodies. Extensive hydrometric field data (1999-2014) for 7 small

reservoirs within the Merguellil catchment in Central Tunisia are used to calibrate the method and explore its limits. MNDWI

is shown out of six commonly used water detection indices to provide high overall accuracy and threshold stability during

high and low floods, leading to a mean surface area error below 15%. Applied to 546 Landsat 5, 7 and 8 images over 1999-

2014, the method reproduces surface water extent variations across small lakes with high skill (R2 = 0.9) and mean RMSE10

of 9 300 m2. Comparison with published global water data sets reveals a mean RMSE of 21 800 m2 (+ 134%) on the same

lakes and highlights the value of a tailored MNDWI approach to improve hydrological monitoring in small lakes and reduce

omission errors of flooded vegetation. The rise in relative errors due to the larger proportion and influence of mixed pixels

restricts surface water monitoring below 3 ha with Landsat (NRMSE = 27%). Interferences from clouds & scan line corrector

failure on ETM+ after 2003 also decrease the number of operational images by 51%, reducing performance on lakes with rapid15

flood declines.

1 Introduction

1.1 Monitoring water resources in small reservoirs

Support from governmental and international projects combined with farmer initiatives have led to significant development of

small reservoirs (< 1 Mm3) across the globe, including India (Bouma et al., 2011; Venot and Krishnan, 2011; Massuel et al.,20

2014), Brazil (Burte et al., 2005) and parts of Northern and sub-Saharan Africa (Nyssen et al., 2010; Sawunyama et al., 2006;

Talineau et al., 1994). These have been built to reduce soil loss and silting of downstream dams, as well as harvest scarce and

unreliable water resources for local users (Habi and Morsli, 2011; Wisser et al., 2010).
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Despite their growing importance worldwide, small reservoirs are rarely monitored in situ, except for research purposes (Al-

bergel and Rejeb, 1997) due to their quantity, size and geographical dispersion. Instrumenting and maintaining a hydrometric

observation network requires significant time, equipment and transport costs (Liebe et al., 2005) which are not compatible with

the localised and modest importance in the water budget of small reservoirs. As a result, little information is available on their

water availability and their cumulative influence (Ogilvie et al., 2016b).5

Water availability in small reservoirs is constrained by design capacities but determined by site-specific hydrological dy-

namics regulated by both natural (climate, topography, geology, geomorphology, pedology), and human factors (maintenance,

leaks, withdrawals, releases). Studies based on hydrological measurements and geochemical analyses have identified the water

balance of small reservoirs (Gay, 2004; Grunberger et al., 2004; Lacombe, 2007; Li and Gowing, 2005; Nyssen et al., 2010)

but highlighted multiple modelling uncertainties due to evaporation, groundwater flows, high spatial rainfall variability and10

human management (Li and Gowing, 2005; Grunberger et al., 2004; Lacombe, 2007; Leduc et al., 2007; Kingumbi et al.,

2007). Rainfall-runoff modelling of gauged small reservoirs in Tunisia notably failed to exceed R2 = 0.5 (Lacombe, 2007) and

difficulties are greater in ungauged catchments (Cudennec et al., 2005).

1.2 Remote sensing in hydrology

Images from a variety of active and passive sensors have been used successfully in hydrology to inventory, to assess flooded15

areas, river stage levels and widths, as well as to investigate hydrological processes and water balance issues. Low spatial

resolution sensors such as MODIS (Moderate Resolution Imaging Spectroradiometer, 250 m) and AVHRR (Advanced Very

High Resolution Radiometer, 1.1 km) providing daily coverage of the globe, notably facilitated the assessment and monitoring

of large wetlands (Guo et al., 2017) including the Niger Inner Delta (Mahé et al., 2011; Seiler et al., 2009; Ogilvie et al.,

2015; Bergé-Nguyen and Crétaux, 2015), the Okavango (Wolski and Murray-Hudson, 2008; Gumbricht et al., 2004), the Tana20

Delta (Leauthaud et al., 2013) or the Mekong (Kuenzer et al., 2015; Sakamoto et al., 2007), large rivers such as the Amazon

(Martinez and Le Toan, 2007; Alsdorf et al., 2007) and large lakes notably in East Africa (Swenson and Wahr, 2009; Ouma and

Tateishi, 2006) and China (Ma et al., 2007; Qi et al., 2009). These sensors have also been used for global assessments (Prigent

et al., 2007; Papa et al., 2010; Klein et al., 2015) but their low spatial resolutions remain inadequate for small reservoirs, as a

single MODIS pixel corresponds to an area of 6.25 ha.25

High spatial resolution imagery such as SPOT (Satellite Pour l’Observation de la Terre), Quickbird and Ikonos capture

images under 5 m resolution but their reduced spatial coverage (10-20 km wide for the highest resolution) make them less

suitable for medium-sized catchments and their costs are prohibitive for operational long-term monitoring. Recent sensors

such as Sentinel-2 capture 10 m images of the entire globe every 5 days, providing enhanced opportunities but hydrological

investigations which require historical perspectives will continue to rely on previous sensors. Landsat which provides free30

multispectral images every 16 days since the 1970s at medium geometric resolution (30 m since Landsat 4 in 1982) therefore

continues to provide the most potential to detect and monitor small water bodies.
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1.3 Landsat imagery to map and monitor small water bodies

Smaller water bodies have been included in worldwide and local inventories, done with Landsat imagery (Feng et al., 2016;

Verpoorter et al., 2014; Yamazaki et al., 2015). Local studies on small lakes from 1 ha to 25 ha in West Africa (Gardelle et al.,

2010; Liebe et al., 2005; Annor et al., 2009; Soti et al., 2010; Jones et al., 2017), in Southern Africa (Sawunyama et al., 2006),

in South India (Mialhe et al., 2008), and in South America (Rodrigues et al., 2011) specifically investigated the potential of5

remote sensing methods to assess surface areas of small reservoirs. Field validation confirmed the potential of remote sensing

(RS) methods as a cost-effective technique to identify water bodies but revealed problems of variable accuracy (Ran and Lu,

2012; Annor et al., 2009; Solander et al., 2016) on small lakes (under 100 ha). Importantly though small water bodies were

detected using satellite imagery, the feasibility of monitoring surface water dynamics and providing long term water availability

assessments was not investigated (Baup et al., 2014; Pekel et al., 2016). Studies provided a snapshot of floods in reservoirs at10

a given time (Liebe et al., 2005; Feng et al., 2016), or of seasonality using two dates (Annor et al., 2009) but did not explore

their dynamics over time.

Landsat has recently been used to undertake long term monitoring of surface water bodies at global (Pekel et al., 2016) and

regional scales (Mueller et al., 2016; Tulbure et al., 2016; Avisse et al., 2017). The remarkable study by Pekel et al. (2016)

exploited 1 petabyte of Landsat archive imagery to study surface water dynamics in 30 m pixels globally over 1984-2015.15

Small water bodies are included, but Yamazaki and Trigg (2016) warns of limitations in Pekel et al. (2016) as “resolution

issues prevent analysis of small water bodies". Similarly Mueller et al. (2016) focussing on Australian water bodies recognised

the difficulties in the “presence of water and vegetation within the pixel" and that their “product may not be fit for [...] small

farm dams". In their own inventory of water bodies, Yamazaki et al. (2015) had also noted the omission errors on water bodies

below 100 ha. These errors are influenced by the low spatial resolution but essentially by the increased presence of flooded20

vegetation and shallow waters which affect the reflectance signal (Sawunyama et al., 2006; Annor et al., 2009; Mueller et al.,

2016; Yamazaki et al., 2015). These studies recognise the difficulties of using Landsat imagery, but adequate ground truth data

remains sparse and extensive field validation has not quantified the limits of these approaches on the smallest lakes. Validation

depends on higher resolution imagery or other published water maps which suffer from similar classification inaccuracies

(Yamazaki et al., 2015), non negligible on these small water bodies. Pekel et al. (2016) for example in their validation used25

sample pixels of seasonal water bodies within 1◦ tiles but these did not specifically account for small water bodies as shown in

this paper.

Furthermore, hydrological monitoring of small water bodies imposes specific constraints on temporal resolution, due to

the limited flood amplitude and the rapid flood declines, and “with the 16-day repeat cycle of Landsat [...] floods may be

missed" (Yamazaki and Trigg, 2016). Clouds and shadows in optical imagery as well as the scan line corrector failure (after30

31.05.2003 on Landsat 7 ETM+ sensor) are known to have a detrimental influence in global water data sets (Pekel et al., 2016;

Mueller et al., 2016). These have a proportionally larger influence on small water bodies where gap-fill methods are not suited

to localised rapid changes in land cover (Zeng et al., 2013; Zhu and Woodcock, 2014). The influence of Landsat’s limited

temporal resolution and these interferences on representing flood dynamics in small lakes remains however unknown.
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1.4 Improving surface water monitoring in small reservoirs

The objective of this research was to assess and optimise the ability of Landsat to provide sufficient, accurate observations of

long term surface water dynamics in the smallest water bodies (1-10 ha). Exceptional long term hydrological time series of 7

small reservoirs over up to 15 years are used here to develop and validate a semi-automated method using Landsat imagery,

capable of reproducing surface water dynamics and long term water availability in small water bodies.5

Numerous spectral water indices and classification methods exist but these are often tested and developed empirically on

larger water bodies (Feyisa et al., 2014) and their suitability in different settings must be investigated (Palmer et al., 2015).

Suitable automation of water detection over several reservoirs and over several images also imposes specific constraints on the

methodology, in terms of detection accuracy, threshold stability, cloud presence, and computer processing when manipulating

satellite imagery (Mialhe et al., 2008; Ogilvie et al., 2015; Pekel et al., 2016). Widely used water detection indices were10

compared to assess their suitability to monitor floods on small reservoirs. The interferences from clouds, shadows and scan line

corrector failure were investigated and reduced here by defining optimal filter thresholds based on long term field data. Results

were compared with analysis performed using available global water data sets (Pekel et al., 2016) to quantify accuracy issues

and argue for the benefits of specific approaches for small water bodies.

2 Methods15

2.1 Small reservoirs in the Merguellil upper catchment

The case study area is the Merguellil upper catchment located in central semi-arid Tunisia (Fig. 1). A total of 58 small reservoirs

were built across this 1180 km2 catchment since the 1960s, as a result of international projects and an ambitious nationwide

water and soil conservation strategy. These were inventoried through the combination and cross referencing of records from

local authorities, literature (Kingumbi, 2006; Lacombe, 2007; CNEA, 2006), satellite imagery and field visits (Ogilvie et al.,20

2016a).

Initial design capacities of small reservoirs in the catchment range between 17 000 m3 and 1 590 000 m3 though the median

size only reaches 66 000 m3. Peak flooded surface areas vary between 0.5 ha and 18 ha. Lakes flood as a result of intense

localised rainfall events (Ogilvie et al., 2016b), during autumn and spring mostly. High annual and interannual variability in

rainfall (329 mm/year±131 mm) combined with significant heterogeneity in the infiltration, evaporation rates and occasional25

withdrawals lead to large disparities in the frequency and duration of floods in small lakes (Ogilvie, 2015; Lacombe, 2007).

Due to the importance of the downstream irrigated Kairouan plain for national agricultural production, the catchment has

been the focus of numerous research projects to understand the changes and influences exerted by evolving climatic and

human dynamics (dam and small reservoir construction, irrigation withdrawals, etc.). Small reservoirs in the Merguellil upper

catchment and along the Tunisian NE-SW mountain range (“Dorsale”) consequently benefited from extensive hydrological30

monitoring thanks to ongoing research collaboration with the local authorities (Albergel and Rejeb, 1997).
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Figure 1. Merguellil upper catchment and location of instrumented small reservoirs

2.2 Field hydrometric monitoring

Seven reservoirs helped calibrate and validate the spectral water indices. Lakes were chosen amongst those identified as flooded

on a classified 10 m SPOT image in spring 2013, and flooded surface areas were measured with real time kinematic (RTK)

GPS, to reduce uncertainties from stage-height rating curves. These lakes provided a range of surface areas from 0.2 ha to 7.8

ha (Table 2) to test the performance of indices.5

Seven small reservoirs with extensive field data were then used to test the performance of the method over time, i.e. identify

how spatial and temporal resolution affected monitoring of surface water extent dynamics and water availability. Lakes were

selected based on the length and quality of their hydrometric time series and include a range of altitudes (Fig. 1), capacities

(Table 3) and associated flood dynamics (amplitude and duration). With the exception of lake Morra, these 7 lakes were not

used in the calibration of the indices, giving further weight and confidence to the validation of their thresholds.10

Reservoir levels were monitored with automatic stage pressure transducers and daily readings by local observers on limni-

metric stage ladders were used to cross check and fill gaps in automatic readings. Transducer uncertainties are minimal, with

a 0.2 cm resolution and theoretical ±0.25% precision. Stage values were converted to water volumes using rating curves

available for each lake. These had been acquired and updated to account for silting as part of regular surveys (Albergel and

Rejeb, 1997). Two additional surveys were undertaken here with a RTK GPS and interpolated based on Delaunay Triangular15

Interpolation Networks (TIN), well suited to bathymetric applications.
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Figure 2. Chain of treatments applied to the 546 Landsat (TM, ETM+ and OLI) images

Lakes cells to automate extraction of the flooded area (Fig. 3) were defined using freely available high resolution imagery

from Digital Globe and Astrium available in Google Earth and Bing Maps. These cells defined the maximal flooded area based

on visual interpretation of geomorphological boundaries of the lake (with a 10% buffer) and helped constrain overestimations,

i.e. pixels which do not belong to the lake but share similar reflectance profile, such as surrounding flooded vegetation, river

stretches and temporary ponds or waterlogging.5

2.3 Landsat preprocessing

Landsat Level 1 Terrain Corrected (L1T) (orthorectified) products from USGS Earth Explorer were used here. Level 2A prod-

ucts corrected to land surface reflectance using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) or

MACCS treatment chain were not available for Landsat 8 or before 2002 for our catchment at the time of research. The required

radiometric (including atmospheric & topographic) corrections were therefore derived for each sensor and band combination.10

These are detailed in the Appendix. Based on data availability of Landsat images and field limnimetric data for the seven lakes,

546 Landsat 5-8 images over the period 1999-2014 were acquired and treated (Fig. 2).

2.4 Spectral water indices for multi-image analysis of small water bodies

Six widely used water detection indices (Table 1) were compared to assess their suitability to monitor floods on small reservoirs

in terms of detection accuracy and threshold stability. NDPI is effectively the opposite of MNDWI and was therefore not15

investigated separately. NDVI was also considered as negative values of the index have been used to detect water bodies (Ma

et al., 2007; Mohamed et al., 2004). In this rural, gently sloping watershed, the AWEInsh variant was used, as AWEIsh is

6
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Table 1. Spectral water indices compared in this paper

Normalised Difference Water Index (McFeeters, 1996) NDWI = Green−NIR
Green+NIR

Modified NDWI (Xu, 2006) MNDWI = Green−SWIR
Green+SWIR

Normalised Difference Pond Index (Lacaux et al., 2007) NDPI = SWIR−Green
SWIR+Green

Normalised Difference Moisture Index (Gao, 1996) NDMI = NIR−SWIR
NIR+SWIR

Normalised Difference Turbidity Index (Lacaux et al., 2007) NDTI = Red−Green
Red+Green

Normalised Difference Vegetation Index (Rouse et al., 1973) NDV I = NIR−Red
NIR+Red

Automated Water Extraction Index (Feyisa et al., 2014) AWEInsh = 4× (Green−SWIR1)

−(0.25×NIR4 +2.75×SWIR2)

optimised to remove urban and topographic shadow pixels. For NVDI and NDTI, values below the threshold were classified as

water, and conversely for the four other indices. For SWIR, band 5 for TM/ETM+ and band 6 for OLI were used in accordance

with other studies (Ji et al., 2009; Ouma and Tateishi, 2006).

2.5 Calibration and comparison of spectral water indices

The six water detection indices were calibrated on two Landsat 8 images to assess the performance and stability of each index5

in high waters (March 2013), and in low waters (June 2013) when greater proportions of vegetation growth, algae, turbidity can

affect water detection. A third image from May 2013 when vegetation and algae growth was evident but in reduced proportions

was used to validate thresholds. Timed to coincide with the 16-day Landsat 8 acquisition cycle (Table 2), the lag between

satellite overpass and field observation was inferior to 1 week, similar or inferior to previous studies (Liebe et al., 2005; Annor

et al., 2009; Sawunyama et al., 2006).10

Georeferenced GPS contours for each lake and date (Fig. 3 and Table 2) were used to calculate confusion matrices for

each index, lake and Landsat image. Classification thresholds for each index were varied in increments of 0.01, considering

the observed influence of a second decimal in the thresholds (Ogilvie et al., 2015), and optimal thresholds were determined

based on minimising overall accuracy rates. The median threshold from all calibration points (i.e. 7 lakes on 2 images) was

retained as the optimal threshold for each index. The median was preferred over mean threshold to reduce the influence of15

single lakes (and dates) where the optimal threshold is significantly different due to mixed reflectance issues. Similarly, an

optimal inter-lake and inter-date threshold was not determined based on aggregated pixels from all lakes, as we sought to give

equal weighting to each lake rather than allowing large lakes to steer threshold values. This also ensured mixed pixels found

across small reservoirs were better accounted for in the calibration (Jain, 2010). Spectral unmixing techniques (Van Der Meer,

7

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-19
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 24 January 2018
c© Author(s) 2018. CC BY 4.0 License.
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Non-water pixels

Flooded area (DGPS contour)
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Figure 3. MNDWI classification on Landsat 8 29.03.2013 image for lake Morra

1995) were not used here considering the marginal benefit (5% increase in sub-pixel accuracy) observed in Sun et al. (2017)

and the requirements to adapt the approach to deal with residual clouds and SLC gaps in multi-temporal Landsat time series.

PDAI =
|SRS −SGPS |

SGPS
∗ 100 (1)

The Percentage Deviation Area Index (PDAI, Eq. (1)) (Sawunyama et al., 2006) was calculated to provide a relative measure

of the spectral indices’ accuracy in estimating flooded surface area remotely (SRS) compared to the field GPS measurements5

(SGPS). PDAI was not used for calibration as it is not a pixel-based assessment and was here shown to disguise spatial errors,

i.e. over-classified pixels compensating for under-classified areas. Feyisa et al. (2014) showed that additional statistics notably

the Kappa coefficient and McNemar’s test which focus on the frequency of pixels correctly and incorrectly classified did not

provide added benefit when optimising water detection thresholds (Fisher and Danaher, 2013). Confusion matrices and PDAI

errors per lake on the third validation image were then used to discuss the performance of each index and determine the optimal10

water detection index for these small water bodies.

2.6 Influence of clouds, shadows and ETM+ scan-line corrector failure

Gap-fill methods designed to address the loss of pixels from SLC failure and interferences from clouds & shadows rely on

nearby spatial or temporal spectral information. Suited for larger lakes and land use studies, spatial interpolation algorithms

and decision tree classifications (Maxwell, 2004; Bédard et al., 2008) assume that nearby pixels share similar reflectance profile15

which is not compatible with small scale analysis developed here (Zeng et al., 2013; Feng et al., 2016). Our objects of interest

vary between 1 ha and 30 ha and are easily contained within a single SLC-off band, or individual clouds. SLC failure led to

8
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the loss of around 22% of pixels (Zeng et al., 2013), distributed along oblique lines ranging from 14 pixels wide at the edges

to 2 at the centre (i.e. 420 m to 60 m) (Maxwell, 2004).

Temporal methods (Zeng et al., 2013; Zhu and Woodcock, 2014, 2012; Scaramuzza et al., 2004) as those employed by the

USGS to provide SLC corrected images exploit additional spectral data from another image close in time. These rely on the

relative stability of pixel reflectance between images of nearby dates or at least assume “similar patterns of spectral differences5

between dates” (Chen et al., 2011; Zeng et al., 2013). These are again not suited to the detection of ephemeral localised changes

(Zhu and Woodcock, 2014; Yin et al., 2016), such as small scale, rapid changes in water surface area, which do not follow the

same gradual pattern as nearby land use (vegetation) between successive images.

The Fmask algorithm (Zhu and Woodcock, 2012) was used here to quantify the presence of clouds and shadows over each

lake on each Landsat image (details in Appendix). Errors from clouds, shadows and SLC-off pixels were then assessed and10

minimised in post-processing by removing images for each lake with interferences above a determined threshold. This optimal

threshold was determined by minimising the root mean squared error (RMSE) on surface area aggregated over time (15 years)

in order to give importance to both the number and quality of the Landsat observations over time, and therefore compromise

between maintaining high temporal resolution and minimising spatial errors from clouds, shadows and SLC-off interferences.

Thresholds were varied in 5% increments and the quality of fit in terms of R2 and RMSE between remotely sensed surface15

area and field surface area was calculated for decreasing subsets of images. Gouazine lake which possessed both the longest

time series (over 15 years) and the most accurate data and rating curves (updated 6 times) was used to optimise the thresholds.

The approach was repeated on four other lakes (Morra, Dekikira, Guettar, Fidh Ali) to confirm the suitability of the thresholds

and explore the resulting availability of suitable Landsat imagery over all lakes.

2.7 Remote monitoring of surface water dynamics and water availability20

The complete method was applied to all 546 images and surface water extents were assessed for the 7 small reservoirs over

1999-2014. Values affected by excessive cloud & shadow & SLC presence over each lake were removed and remaining obser-

vations were linear interpolated over time into continuous time series of flood dynamics. Alternate smoothing and interpolation

of discrete observations were shown not to improve the results (Ogilvie, 2015), considering the abrupt flood dynamics in small

water bodies. These were then converted to volumes using the site-specific updated surface-volume rating curves. The mean25

water availability per year was calculated to assess the suitability of the approach to derive long term water availability data

for stakeholders. Outliers were further constrained by the known initial maximum capacity of lakes. The skill of the method in

reproducing surface water extent dynamics and water availability assessments over the seven reservoirs were discussed in light

of R2 and RMSE values against the extensive field based data.

2.8 Comparison with published global water data sets30

Results were compared to those obtained when using the global surface water data sets produced by Pekel et al. (2016) with

30 m Landsat imagery. These exploited original approaches based on a combination of expert systems, visual analytics and

evidential reasoning. 200 monthly water history rasters produced by the European Commission Joint Research Centre (JRC)

9
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for our region of interest were downloaded through Google Earth Engines. Monthly surface water extents areas over 1999-2014

were extracted from the raster files for the 13 lakes used previously. Confusion matrices between three JRC images and the

DGPS contours on 7 lakes were first calculated to provide pixel-based comparisons of the method’s ability to detect water

in the smallest reservoirs. Monthly surface water values extracted from JRC datasets over 1999-2014 for 7 small reservoirs

were then compared with mean monthly surface areas based on in situ monitoring. RMSE and RSE values on monthly surface5

water dynamics as well as mean annual water availability were again calculated to compare with results from our approach.

In parallel, the number of NA values in monthly water history rasters within each lake grid cell were collected for each image

to reduce their detrimental influence on surface water area estimates. NA values result from clouds and SLC-off interferences

which are not differentiated in the JRC global water data sets.

3 Results & discussion10

3.1 Spatial accuracy of spectral water indices in small water bodies

3.1.1 Water classification with variable thresholds (calibration)

All six spectral water indices performed well when calibrated for a single image (March or June), achieving consistently high

overall accuracy rates (Fig. 4) over 80%. In high waters (March), associated surface area errors remain below 20% on 4 out

of 6 lakes. Even on the smallest lake (Gbatis) the PDAI values varied between 9% and 27% depending on the index, showing15

remarkable precision considering its size of 1 ha and the coarse 30 m image resolution.

In low waters (June), PDAI values degraded however for NDVI, NDWI and NDMI and exceeded 50% on the smallest

lake. Only MNDWI and NDTI maintained PDAI rates below 25% for all lakes. In the dry season, lower water levels, greater

algae and vegetation growth make accurate discrimination more complex (Ji et al., 2009). Smaller lakes intrinsically have a

higher proportion of mixed pixels and shallow waters (Mialhe et al., 2008) where the spectral reflectance is a combination of20

water, soil and vegetation. The coarse resolution exacerbates these errors due to the proportionally greater influence of a single

misclassified pixel on the result (1 ha corresponds to a little more than 9 pixels).

NDVI which suffers from inability to correctly distinguish vegetation from flooded vegetation sees its performance diminish

accordingly. NDMI on the other hand performed better in low waters, coherent with its objective to detect moisture and all

types of water. Thanks to the middle infrared band which penetrates water less and is less affected by turbidity & vegetation in25

the water, NDMI was able to detect the two smallest lakes but low user accuracy led to gross PDAI errors, as it overclassified

many vegetated pixels. MNDWI and NDTI fared the best with these smaller reservoirs (eg. Gbatis) due to their ability to detect

turbid waters, and distinguish flooded vegetation over wet vegetation on land.

AWEI performed well on the first image, but the index failed on the other images with overall accuracies falling below 60%

on four lakes. These were here related to inherent discrepancies in the radiometric corrections apparently amplified by the30

nature of the AWEI equation, rather than contained as with other normalised band ratio indices. Normalising reflectance values

between the 546 images may help reduce these issues, but as a result AWEI was not considered for the semi-automation of this
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Figure 4. Optimal threshold (based on overall accuracy) for each lake & index on March and June calibration images

method. Furthermore, Jiang et al. (2014) showed that MNDWI outperformed AWEI when extracting narrow water bodies on

Landsat.

3.1.2 Water classification with fixed thresholds (validation)

The optimal threshold determined from the March and June images on seven lakes was used in validation on a third image

(May). Accuracy rates remained high for MNDWI and NDTI but reduced significantly for the three other indices (Fig. 6).5

Issues of shallow waters and vegetation were again prevalent here and even an image-specific threshold could only minimise

omission and commission errors to 50% with NDVI, resulting in PDAI of 46%.

The stability of the individual thresholds (Fig. 4) combines with the sensitivity to threshold change (Fig. 5) to determine the

amplitude of the errors when using fixed thresholds. A marginal shift in threshold due to shallow waters and abundant algae

will then introduce larger errors and omission rates with NDVI and NDWI reached 76% and 100% on the smallest lakes. The10

significant rate of change observed highlighted that thresholds must be optimised up to 2 decimals. MNDWI achieved better

accuracies on these small lakes and achieved consistently the lowest PDAI errors, as a result of the lower rate of change of the

MNDWI index over NDTI (Fig. 5).

11

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-19
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 24 January 2018
c© Author(s) 2018. CC BY 4.0 License.



−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

O
ve

ra
ll 

ac
cu

ra
cy

 ra
te

s

AWEIsh
MNDWI
NDWI
NDMI
NDTI
NDVI

Figure 5. Rate of change of overall accuracy rates for varying thresholds of MNDWI on Landsat 8 29.03.2013 image for lake Morra

●●
●

●

●

●

●●●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
● ●

●

●●
●●

● ●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●
●

●

●●●●● ● ●

●●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●●●
● ●

●●●

●●

●

●

●●●●
● ●

●●

●●

●

●

●●●
●

●
●

70

75

80

85

90

95

0

25

50

75

0

25

50

75

100

0

50

100

150

200

250

O
verall accuracy

P
roducer accuracy

U
ser accuracy

P
D

A
I

MNDWI NDMI NDTI NDVI NDWI Pekel et al. (2016)

A
cc

ur
ac

y 
ra

te
s Lake

●

●

●

●

●

●

Gbatis
En Mel
Garia S
Morra
Bouchaha A
Mdinia

Figure 6. Accuracy and error values for 5 spectral water indices and the Pekel et al. (2016) expert systems approach on May validation image

12

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-19
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 24 January 2018
c© Author(s) 2018. CC BY 4.0 License.



Table 2. Landsat 8 MNDWI flooded surface area assessments compared to field measurements for 7 lakes on the calibration and validation

images

Lake name Gbatis En Mel Kraroub Garia S Morra Bouchaha A Mdinia

Cell n◦ 18 21 25 28 30 35 50

Calibration L8 surface area 29.03.13 (ha) 1.08 5.94 8.01 2.16 8.19 0.18 7.56

GPS surface area 26.03.13 (ha) 0.99 5.60 7.78 2.51 7.67 0.18 N/A

L8 surface area 09.06.13 (ha) 0.45 4.41 4.86 1.44 6.75 0.09 6.39

GPS surface area 11-14.06.13 (ha) 0.37 4.42 5.29 2.07 7.07 N/A 6.30

Validation L8 surface area 24.05.13 (ha) 0.72 4.59 17.37∗ 1.62 7.20 0.18 6.12

GPS surface area 21.05.13 (ha) 0.67 4.85 5.92 2.25 7.33 0.21 6.20

Overall accuracy (%) 92.6 87.9 64.8 92.7 89.6 79.6 93.9

Producer accuracy (%) 77 81 86 67 88 42 90

User accuracy (%) 71 88 38 93 93 49 91

PDAI (%) 8 7 244 28 5 14 1

∗ 46% of clouds and 50% shadows were detected over this lake on this L8 image

These results confirm firstly its suitability over other band ratio indices on the smallest lakes, in line with results on larger

water bodies (Feyisa et al., 2014; Ji et al., 2015; Jiang et al., 2014; Ogilvie et al., 2015). Applied across seven lakes and three

images, the method yields a R2 Pearson correlation coefficient of 0.99 and low RMSE errors, confirming secondly that a fixed-

threshold MNDWI can be used to study over time lakes from 1 ha with 30 m Landsat images (Table 2). Surface area errors

ranged from 1 to 28% (mean 10.5%, s.d. 8.7%) with some underestimations observed due to undetected narrow inlets on certain5

lakes. On the smallest lakes (Bouchaha A and Gbatis) however errors reached only 14 and 8%. In in the dry season, Bouchaha

A reduced to only 0.2 ha, therefore PDAI error reached 50% with all indices which is to be expected as it corresponds to just

over 2 Landsat 30 m pixels.

Optimising thresholds for each lake and image individually can reduce PDAI errors below 5%, highlighting the potential for

further improvements by developing (unsupervised) classification methods capable of being used over numerous locations and10

images reliably and efficiently (in terms of CPU and user input). Optimising thresholds for each lake but not each image only

improved performance on certain small lakes.

3.1.3 Comparison with previous approaches

Previous studies to map small reservoirs yielded PDAI errors of 10% to 50% on lakes in the range 1.5 - 5 ha and with image-

specific thresholds (Liebe et al., 2005; Sawunyama et al., 2006). Errors in this study remained minimal even on lakes of this15

size despite the same spatial resolution of the images, pointing to the improved ability of indices in detecting mixed pixels

caused by shallow waters. Including mixed pixels from small reservoirs in the calibration also improved performance (Ji et al.,
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Figure 7. Errors due to interference from clouds, shadows and SLC-off percentage across Gouazine lake cell

2009; Jain, 2010) and led to a slightly lower threshold (-0.09). The MNDWI threshold for water detection is often near 0 but

here a value close to that found in wetlands (Ogilvie et al., 2015) with similar mixed spectral profiles was determined.

Confusion matrices performed on the JRC monthly surface water rasters (Pekel et al., 2016) confirmed their excellent

performance on larger lakes in high waters (e.g. Morra, Mdinia) with PDAI under 10% and overall accuracies near 90%.

Overall accuracy values remained high (> 80%) on other lakes, due to the large number of non water pixels correctly classified5

in each lake cell but water omission errors (i.e. producer accuracy) on the smaller lakes (under 5 ha) were substantial, rising

in some cases over 50% (Fig. 6). Commission errors remained minimal (10% on average) indicating that the expert system

approach suffered from the inability to detect all types of water, rather than from overdetection. Confusion matrices on the

June images confirmed the progressive decline in accuracy as water reduces and the presence of flooded vegetation, algae and

shallow waters increase. In June, overall accuracy rates declined and PDAI for instance rose from 9.1% to 18.7% on Morra and10

up to 74.7 % on Kraroub where significant algae and vegetation growth was observed. In comparison, MNDWI designed to

detect mixed water reflectance led to a 7.1 % PDAI on this 5 ha lake. Across all 7 lakes, omission errors reached 32% in high

waters and 41% in shallow waters. These are substantially higher than values provided in Pekel et al. (2016) (23% for seasonal

water bodies in Landsat 8) and in Mueller et al. (2016) (12% in small water bodies and 26% where water and vegetation

mix). These suggest that the validation approach which uses in Pekel et al. (2016) sample pixels with “high probability of15

water occurence" within 1◦ tiles introduced a bias towards larger, near permanent water bodies, which also contained greater

proportions of clear water pixels.
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Figure 8. Change in R2 (between field and remotely sensed surface areas), remaining number of Landsat scenes and PDAI for increasing

percentages of SLC-off and cloud & shadows pixels tolerated (Lake Gouazine)

3.2 Influence of clouds, shadows & SLC-off pixels on multi-temporal analysis

3.2.1 Interference from clouds, shadows & SLC-off

The influence of clouds, shadows and SLC failure on estimated flooded areas from Landsat imagery over 1999-2014 are

illustrated in Fig. 7 and Fig. 8 based on field data from one small reservoir. Detected on 28% of the 546 Landsat images,

clouds lead essentially to commission errors (false positives) and overestimation, as a result of visible wavelengths being5

reflected while much of the electromagnetic energy is absorbed by the droplets in clouds. Their effect was not systematic and

proportional (Fig. 8), as shown by underestimations in 30% of cases where clouds were detected across the whole lake cell.

The diversity in the nature and properties (temperature, thickness, water content...) of clouds are indeed firstly responsible for

the heterogeneous reflectance observed and the resulting classification difficulties. The influence of shadows is more moderate

and less frequent, responsible for overestimations in only 5% of images. This results partly from the greater difficulties in10

discriminating shadows and the overlap from clouds. Pixel loss from SLC failure varies across Landsat tiles and for a given

lake, 30% of the 287 Landsat 7 SLC-off images suffered from minor pixel loss (< 10%). SLC-off pixel loss led to a systematic

underestimation of flooded areas, on average by 35% (Fig. 8).

3.2.2 Optimising image availability vs. interferences

Optimising on R2 tends towards removing all cloud & SLC interferences, and therefore reduces the number of available15

observations. Considering the objective of hydrological monitoring and maintaining sufficient temporal repetitivity, images

with up to 25% SLC-off pixels and 40% cloud & shadow pixels over the studied lake cell were retained here. These thresholds

were found to minimise the mean squared error on surface area aggregated over 15 years which gives importance to both the

number and quality of the Landsat observations over time.

This calibration removed a significant 51% of images, leaving on average 282±27 Landsat images suitable for observations20

across these 7 small reservoirs (Table 3). This equates to 1.5 images/month over the 1999-2014 period studied though these

are unevenly distributed as seen in Fig. 9, due partly to low overall cloud cover between March 2013 - December 2014 over
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Figure 9. Lag time between successive Landsat images, based on all images available and after optimisation to reduce clouds, shadows and

SLC-off interferences

our area of interest. The acquisition cycle of Landsat 7 is also staggered by 8 days compared to Landsat 5 and 8, leading to a

revisit frequency up to 8 days. The catchment is located at the overlap of two paths visited at 7 days interval, further increasing

availability.

Significantly when studying one lake, 59% of the Landsat 7 post-2003 images were discarded due to SLC-off pixels, and

31% of all Landsat images were removed due to excessive cloud presence. Variations between lakes in the number of images5

available were high when using the same thresholds, due to greater cloud presence on higher altitude lakes (Morra) as well as

the irregular SLC interference detailed earlier. These confirm the value of lake-specific cloud detection to account for the scale

of small reservoirs (i.e. a 0.1 km2 area within a 33 300 km2 Landsat 8 tile, i.e. 0.0003%). In other catchments, proximity to

coastal areas and more pronounced orography may increase the proportion of images affected by clouds.

3.3 Remote monitoring of surface water dynamics in small reservoirs10

Results from this semi-automated method applied across 546 Landsat images (1999-2014) and 7 lakes yielded a strong corre-

lation (R2 = 0.92) between remotely sensed flood areas and field data (Fig. 10). Confirming its excellent performance in terms

of accuracy and stability across reservoirs and over several years, results also substantiate the method’s ability to be used across

multiple sensors notably Landsat 8 OLI, with Landsat 7 ETM+ and Landsat 5 TM, in line with what Vogelmann et al. (2001)

showed on TM and ETM+. On larger lakes with long term and accurate time series such as Gouazine, R2 reached 0.95 with an15

RMSE of 6800 m2 (Table 3). When accounting for the lake size, this equates to a median relative (PDAI) error of 11% (Fig.

11).

Landsat observations provided here accurate insights into the surface water extent dynamics, closely reproducing flood peaks

and declines notably (Fig. 12). Reduced image availability due to clouds, shadows and SLC-off however prevented accurate
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Figure 10. Remotely sensed surface areas with MNDWI on Landsat imagery versus field data over 1999-2014 across all 7 lakes
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Figure 11. Surface area error (in PDAI %) from remote sensing data against field data for 7 lakes

representation (interpolation) of the steep flood rises associated with intense rapid floods as opposed to the more gradual

declines, easier to interpolate. As seen in Fig. 7 and Fig. 8, increasing the allowance of clouds, shadows and SLC-off pixels

to raise image availability leads to a decline in R2 and a rise in PDAI. Conversely, single outliers remain, but reducing cloud,

shadows and SLC thresholds was shown not to remove these larger classification errors. These outliers are due to the inherent

uncertainties in the method, partly incomplete detection of clouds and classification difficulties (e.g. overestimation as a result5

of detecting water flow in the tributaries or peripheral flooding due to cells being defined broadly to account for exceptional

flood volumes).
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GOUAZINE FIDH ALI

HOSHAS MORRA

Figure 12. Surface water extent dynamics from field data and remote sensing over 1999-2015 for 4 lakes. JRC data (Pekel et al., 2016) is

filtered to images with less than 25% NA over the lake cell (the complete JRC datasets are represented in pale blue)
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3.3.1 Greater errors on small lakes

On smaller lakes, the influence of incorrectly detected pixels is proportionally greater due to the low spatial resolution and

reduced pixel numbers. Mean PDAI rises from 13% to 27% on surface areas under 3 ha and scattering is reflected in the

reduced NSE skill values (Fig. 11 and Table 3). On Hoshas, this is exacerbated by the numerous empty periods and the greater

mathematical influence on R2 of minor classification noise. Errors are also proportionally greater at the lower part of the H-S5

rating curves. Over a reduced period (2011-2014) where the lake was regularly flooded and data confidence is greater, R2

for Hoshas rises to 0.77. Smaller lakes also suffer from greater classification difficulties, discussed in calibration of indices,

due to more heterogeneous pixels where soil, vegetation and water reflectances overlap. Threshold calibration of our MNDWI

index led here to a minor overestimation for the lowest water levels, as seen in Fig. 11 and for Fidh Ali and low flood levels in

Gouazine in Fig. 10. In absolute terms, however, mean error remains contained to 9 300 m2 for both small and larger lakes.10

3.3.2 Dealing with rapid flood declines

On these smaller lakes, the method continues in many cases to be able to derive time series reproducing surface water dynamics,

notably highlight drought periods and the minor flooded areas (e.g. Fidh Ali in Fig. 12). However, the reduced amplitude of

the flood and crucially the rapid decline can lead to difficulties. Out of 7 events on the smallest lakes (Fidh Ben Nasseur and

Hoshas), 2 minor events (0.5 ha flood) were completely undetected and two were detected after surface area had declined15

by 50%. On these lakes, 1 ha floods were completely infiltrated and evaporated within 21 days. Figure 12 also illustrates the

difficulty in interpolating points with variable and non negligible time lag into a hydrologically coherent daily time series.

Available observations remained however relatively accurate on Fidh Ben Nasseur (R2 = 0.91), showing the potential of the

method even on the smallest lakes (< 1 ha), subject to sufficient temporal resolution.

3.3.3 Reduced surface water amplitudes20

On the largest lake studied here (Morra), GPS contours revealed the obsolescence of the stage-surface rating curve, which has

not been updated over the past 20 years due to the lake remaining flooded through the year and the access difficulties to perform

bathymetric surveys. This partly explains the lowR2 calculated but results also display difficulties in extracting consistent flood

trends from the remote sensing data (Fig. 12). These can be explained by the morphology of this large deep lake, where the

uncertainties of the remote sensing method are significant compared to the amplitude of the surface area variations (80 000 -25

100 000 m2 on Morra against 0 - 90 000 m2 on Gouazine). Accordingly, it is not only the spatial resolution and number of

pixels but the amplitude of variations in the flooded surface area over time (e.g. 0 - 90 000) which determine how much remote

sensing of surface water extent is affected by uncertainties and scattering.

3.4 Remote assessment of long term water availability in small reservoirs

Daily time series of surface area aggregated and converted into mean annual surface volumes are shown in Fig. 13. The fit with30

the mean volume assessed from stage data is again excellent for Gouazine (R2 = 0.91) (Table 3). On other lakes, the absence of

19

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-19
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 24 January 2018
c© Author(s) 2018. CC BY 4.0 License.



Table 3. Landsat RS performance on daily surface areas and mean annual volumes

Lakes (observation period)
Initial

capacity

(103m3)

Mean

surface

area (m2)

Nb images

(1999-

2014)

Daily surface area Mean annual volume

NSE RMSE (m2) NSE RMSE (m3)

Gouazine (1999-2014) 237 28700 269 0.95 6800 0.91 14400

Dekikira (1999-2008) 219 53900 240 0.73 12200 0.59 36600

Morra (2011-2014) 705 84200 250 0.43 12200 0.29 87900

Guettar (2011-2014) 150 24000 302 0.69 9600 0.81 8500

Fidh Ali (1999-2005) 134 15800 308 0.81 6900 0.73 13100

Hoshas (1999-2014) 130 1300 310 0.18 7200 0.38 5000

Fidh Ben Nasseur (1999-2001) 47 800 298 0.91 900 N/A 600

Gouazine Hoshas
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Figure 13. Annual mean volumes from field data and remote sensing data over 1999-2015 for 2 lakes

stage data over several years limited the number of values which could be compared, but for available years Fig. 14 indicates

a good overall fit (R2 = 0.82). The method therefore provides a valuable tool to assess and compare water resources between

years and lakes. Results here highlight the significant variability in terms of inter-lake and inter-annual water availability that

can be observed across all small reservoirs in the catchment (Ogilvie et al., 2016a).

R2 values increased for certain lakes as a result of the smoothing of the method’s uncertainties (e.g. Guettar and Hoshas), but5

conversely reduced on other lakes (e.g. Dekikira). Interpolation over time between discrete Landsat observations can lead single

outliers to reduce overall performance if they are not rapidly corrected by a subsequent observation. The influence of outliers is
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Figure 14. Mean daily volume per year with MNDWI on Landsat imagery versus field data over 1999-2014 across all 7 lakes

then variable and depends on the lag between successive correct observations. Similarly, all observations do not carry the same

importance when assessing mean annual volumes. Landsat observations close to the peak of an event are accordingly more

important than observations during dry periods or the (gradual) decline of flooded areas, which can be more easily interpolated.

3.5 Comparison with published global data sets

Analysis of available monthly surface water datasets (Pekel et al., 2016) against field data for 7 lakes over up to 15 years5

(1999-2014) highlighted firstly the incidence of NA pixels and the necessity to assess and remove NA pixels above individual

lakes to reduce underestimations (Fig. 15) and reproduce coherent flood dynamics (Fig. 12). Filtering out images with over

25% NA values per lake cell led to optimal RMSE errors and is coherent with the SLC threshold determined with our approach.

After NA removal, NSE across all 7 lakes rose from 0.39 to 0.78 but Fig. 16 confirms the residual difficulties, consistent with

the omission errors identified on single JRC water history rasters (Fig. 6). Mean RMSE reaches 22 500 m2 and removing all10

NAs only improves RMSE further to 21 800 m2 compared to 9 300 m2 with the MNDWI approach. On small lakes under 5 ha

which present greater shallow waters and flooded vegetation, PDAI errors are proportionally more important and reach 61% on

average. On Fidh Ali (Fig. 12), difficulties due to the significant vegetation in the lake lead to vast underestimations and fail to

detect certain floods completely. On surface areas over 5 ha, PDAI errors remain high around 35% and interestingly continue

to underestimate surface water areas. These result from omission errors during summer months due to vegetation growth in15

permanent lakes as well as undetected vegetated areas on the fringes inundated during large floods. Figure 12 highlights the

valuable insights into the general flood dynamics that can be extracted from the JRC datasets on larger lakes such as Gouazine

and Morra, though omission errors remain apparent in the underestimated flood peaks.

These classification inaccuracies are further exacerbated by the limited number of observations. After NA removal, JRC

monthly water history sets provide for instance 99 exploitable images over 1999-2014 on Gouazine, compared to 269 when20
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Figure 15. Remotely sensed surface areas with global surface water data sets (Pekel et al., 2016) versus field data over 1999-2014 across all

7 lakes. Percentage of NA pixels was calculated over each lake cell
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Figure 16. Surface area error (in PDAI %) from global surface water data sets (Pekel et al., 2016) against field data for 7 lakes

using the complete L5, L7 and L8 archives filtered for clouds, shadows and SLC failure (Fig. 8 and Fig. 9). The greater

temporal resolution allows better detection of dry spells, multiple flood peaks, timing of flood peaks and more coherent flood

rises and declines as seen on Gouazine, while on the small Hoshas lake two floods in 2013-2014 are otherwise undetected with

JRC datasets (Fig. 12). These difficulties also have implications on the accuracy of maximum extent estimates, and though

median underestimation is 41%, the spread in the error (Fig. 16) even for larger lakes, prevents systematic corrections. Surface5

area inaccuracies on small lakes in JRC datasets also degrade water resource assessments for farmers or water balances for

hydrologists, with for instance Gouazine RMSE on mean water availability increasing by 24% to 17 800 m3.
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4 Conclusions

Validated against significant hydrometric field data, this paper demonstrates the potential and limitations of Landsat imagery

to monitor surface water extent dynamics and water availability within the smallest reservoirs (1-10 ha). Results confirmed the

superiority of MNDWI out of six widely used band ratio indices to detect flooded areas in seven reservoirs of varying sizes and

over three flood stages. Overall accuracy rates were high despite difficulties of shallow water and flooded vegetation and the5

MNDWI threshold remained sufficiently stable to allow automation across several lakes from 1-12 ha and over Landsat 5, 7 and

Landsat 8 images. The performance of other water detection indices when used in semi automation (fixed thresholds) reduced

significantly due to their greater sensitivity to minor changes in thresholds. With MNDWI, surface area errors remained low,

under 15% on 5 lakes including the smallest ones, remarkable considering the demanding objective of detecting areas under 1

ha with 30 m spatial imagery.10

Applied over 546 images, results highlight the impact of spatial inaccuracies as well as cloud & shadow interferences

over small lakes. Residual errors from cloud uncertainties, due to undetected cirrus clouds and shadows, as well as greater

vegetation, shallow water and associated mixed pixels led to a number of outliers which can be detrimental notably on smaller

lakes. Filtering images with excessive cloud and SLC presence reduced temporal resolution to 1.5 images/month which can

lead to minor floods and those subject to high infiltration to be overlooked by Landsat time series. With a mean RMSE of 9 30015

m2 and R2 reaching 0.9, the method however confirmed the operational potential of Landsat imagery to study surface water

dynamics of floods over 3 ha, as well as long term water availability (R2 = 0.82).

Comparisons with global water data sets (Pekel et al., 2016) notably confirmed the benefits and relevance of specific, comple-

mentary approaches to improve classification in smaller water bodies. Designed and calibrated to account for the specificities

of small reservoirs, this semi-automated MNDWI approach reduced RMSE by 57% in comparison, by minimising omission20

errors from flooded vegetation and shallow waters. Results also argue for the importance of exploiting all Landsat archive

imagery to maximise temporal resolution, capture flood peaks, reproduce coherent flood dynamics and improve water resource

assessments considering the rapid flood declines in small lakes. Clearer distinction of clouds and SLC-off in the JRC datasets

would have allowed finer filtering of images due to the non systematic cloud error observed here.

Accurate long term water availability assessments are notably required to inform farmers of water resources in the millions of25

small reservoirs worldwide (Wisser et al., 2010; Lehner et al., 2011) and improve hydrological modelling. Using free medium

resolution Landsat imagery, this method may be replicated regionally or globally to provide long term data sets across small

water bodies. Future research will help clarify whether the apparent stability of the MNDWI threshold across these 7 lakes and

in other regions (Ogilvie et al., 2015) allows the approach to be transposed without additional field calibration and whether

automatic thresholding approaches may be complementary (Vala and Baxi, 2013; Coltin et al., 2016).30

This research provides evidence of the opportunities from remote sensing in small-scale hydrology, secured by the next

generation of optical sensors providing free images every 5 days (e.g. Sentinel-2, or future SWOT) with high spatial resolution

(< 10 m). Monitoring flood dynamics remains however dependent on low cloud cover and results here point to the value of

assessing their presence at the lake and not image level. They also highlight the need for continued research in improving cirrus
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cloud & shadows detection and notably specific methods capable of addressing the incremental change even on small land use

objects (Zhu and Woodcock, 2014). Alternate optimisation of clouds & SLC-off or concomitant imagery sources including

active sensors (Eilander et al., 2014) could also be used to maintain more observations at critical stages (e.g. flood peaks).

Remotely sensed observations may also be combined with field data and modelling to overcome image availability issues and

problems of incoherent hydrological dynamics.5

Code and data availability. Landsat L1T data are available from USGS Earth Explorer. Monthly water history rasters (Pekel et al., 2016) are

available through Google Earth Engines, image collection ID: JRC/GSW1_0/MonthlyHistory. Fmask is available at https://github.com/prs021/fmask.

Details on the additional scripts and R packages used to process the Landsat imagery are provided in Appendix A

Appendix A: Remote sensing preprocessing

The following preprocessing chain was applied to the 546 Landsat images. Functions belonging to the R rgdal, raster, sp, and10

landsat packages were used but their code was adapted to account for the differences in Landsat 8 bands and metadata files.

A1 Radiometric normalisation

Quantized calibrated (QCAL) digital numbers (DN) for each pixel were converted to at sensor (a.k.a. top of atmosphere,

TOA) spectral radiance L by reversing the calibration process used by USGS (Chander et al., 2007). The linear transformation

used (Eq. (A1)) can be rewritten as Eq. (A2) as DNmin is 0 and DNmax is 255. Grescale and Brescale are the “radiance15

multiplicative” and “radiance additive” rescaling factors, sometimes called gain and bias (or offset). These sensor and band

specific factors were extracted automatically for each band and image from the Landsat metadata files.

(DN −DNmin) · (Lmax−Lmin) = (DNmax−DNmin) · (L−Lmin) (A1)

L=Grescale ·DN +Brescale (A2)

where20

Grescale =
Lmax−Lmin

DNmax−DNmin
=
Lmax−Lmin

255
(A3)

Brescale = Lmin−
Lmax−Lmin

DNmax−DNmin
DNmin = Lmin (A4)

A2 Atmospheric corrections

At sensor radiance were then converted to at canopy (at surface) reflectance using the Dark Object Subtraction method (Chavez,

1996). The DOS approach encompasses conversion to at sensor reflectance to account for intra-annual differences in earth to25
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sun distance and solar illumination (Paolini et al., 2006). It also incorporates atmospheric corrections to estimate top of canopy

(TOC) reflectance (Eq. (A5)) and account for the complex distorting effect of air molecules, aerosol particles, water vapour,

carbon dioxide, methane, etc. which absorb and scatter electromagnetic waves (Hagolle et al., 2015). Absolute corrections were

preferred over relative atmospheric correction methods such as the pseudo invariant features (PIF) and histogram matching as

these do not account for the band specificity of atmospheric disturbances and are therefore not recommended with band ratio5

classifications (Lu et al., 2002). Furthermore, key inputs for physically based models of (part of the) atmospheric effects such

as aerosol optical thickness were not available from nearby Aeronet sites for historical Landsat 5 & 7 data. DOS methods

provide a simple, widely used method for atmospheric corrections, proven to perform well and as reliably as other algorithms

and methods (Paolini et al., 2006; Lu et al., 2002; Song et al., 2001).

ρTOC.DOS =
(Lsat−Lhaze) ·π ·Esun

2

Tauv · (Exsun · cos(90− sunelev) ·Tauz +Edown)
(A5)10

Lhaze = SHV −Lsat1% (A6)

Lsat1% = 0.01 · Esun · cos(90− sunelev)
π ·Esun

2 (A7)

Lhaze =Grescale ·DNmin +Brescale− 0.01 · Esun · cos(90− sunelev)
π ·Esun

2 (A8)

The DOS method supposes that certain objects within an image are dark (in complete shadow) and that radiance values mea-

sured for these objects are due to atmospheric scattering (path radiance, Lhaze) (Chavez, 1996). These dark objects are selected15

from the lowest DN value across at least 1000 pixels. This defines the starting haze value (SHV) which is converted from DN

to TOA radiance according to Eq. (A2). As per Eq. (A8), an allowance is made considering that pixels are rarely completely

dark and 1% natural reflectance is subtracted. Lhaze converted to satellite reflectance is then subtracted to reflectance values

across the image (Eq. (A5)). The improved DOS employed here calculates Lhaze for all bands using only one band (blue band)

to “correlate haze values and maintain the spectral relationship between bands” (Goslee, 2011; Chavez, 1996). In the SWIR20

bands, where minimal scattering occurs, SHV is defined as 0 (Goslee, 2011).

Tauv is the atmospheric transmittance from the target to the sensor, Tauz is the atmospheric transmittance from the sun to

the target and Edown is the downwelling diffuse spectral irradiance at the surface. DOS1 level of correction which assumes

no atmospheric transmission losses in either direction (Tauv & Tauz=1) and no diffuse downward radiation at the ground

(Edown=0), i.e. corrects only for additive scattering was used here. More complex corrections (for haze, aerosols) are less25

adapted to normalising successive images as required here and do not improve overall accuracies (Song et al., 2001; Goslee,

2011).

Esun is the earth to sun distance in astronomical units (AU) provided in the metadata files for OLI. For other sensors (ETM+,

TM), this was calculated based on the date of acquisition indicated in the metadata (and function ESDIST in the R Landsat

(Goslee, 2011) package).30
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Table A1. Exoatmospheric solar constant per band for ETM+ and TM sensors (Chander et al., 2009)

Landsat 7 ETM+ Landsat 5 TM

1 1997

2 1812 1796

3 1533

4 1039

5 230.8 220

6

7 84.9

8 1362

sunelev is the solar elevation angle in degrees for the scene centre provided by the metadata file and again based on known

changes in earth-sun geometry over the months. The complementary angle (90−sunelev) provides the local solar zenith angle.

Exsun is the band-specific exoatmospheric solar irradiance constant in Wm−2× µm−1 calculated based on Eq. (A9). For

OLI, Lmax and REFmax are provided for each band. For ETM+ and TM sensors, Exsun for each band were taken from the

literature (Table A1).5

Exsun =
Lmax · (π ·Esun

2)
REFmax

(A9)

A3 Topographic normalisation

Finally, topographic corrections to account for the effect on surface reflectance values of reduced illumination from inclined

surfaces were implemented. The Minnaert algorithm (Minnaert, 1941), shown to perform as well or better than C correction,

Cosine correction and Gamma correction (Vanonckelen et al., 2013; Hantson and Chuvieco, 2011) was used. Minnaert adds a10

band specific constant K to the cosine correction, a trigonometric correction defined in Eq. (A10) where ρt is the reflectance

value generated by the inclined surface, and ρh is the value on a theoretical flat surface. Illumination is modelled as per Eq.

(A11) where γi is the incident angle, slope angle is θp, solar zenith angle is θz , solar azimuth angle φa, and aspect angle φo.

Slope and aspect were derived in R from the SRTM version 3 30 m digital elevation model, and information on solar azimuth

and zenith angle were extracted from satellite and solar geometry in the metadata files.15

ρh = ρt · (
cosθz

IL
)K (A10)

26

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-19
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 24 January 2018
c© Author(s) 2018. CC BY 4.0 License.



a b c

Figure A1. Comparing cloud detection methods on Landsat 8 29.03.2013 image: (a) Clouds detected over 1.7% of the image with

ACCA(Irish et al., 2006) and Goslee (2011) methods; (b) Clouds incl. cirrus detected over 8.2% of the image with Landsat 8 1380nm

band; (c) Clouds incl. cirrus and cloud shadows detected over 11.5% of the image with Fmask (Zhu and Woodcock, 2014) method.

IL= cosγi = cosθp cosθz + sinθp sinθz cos(φa−φo) (A11)

A4 Cloud and shadow detection per lake

Fmask (Zhu and Woodcock, 2012) which uses top of atmosphere reflectances for all visible and IR bands, and brightness

temperature for band 6 (Eq. (A12)) as inputs was used to assess clouds and shadow presence on each image and over each lake

cell. It reports a 96.41% overall accuracy vs 84.8% for the Automated Cloud Cover Assessment (ACCA) algorithm (Irish et al.,5

2006) used originally by the USGS. DN values in Landsat thermal bands were converted to TOA radiance using Eq. (A2) and

then to (brightness) temperature (Kelvin) using Eq. (A12).

brightness temperature=
K2

log(K1·ε
L + 1)

(A12)

K1 and K2 can be found in the Landsat 8 metadata and in the literature for Landsat 5 and 7 (Chander et al., 2009). ε

is emissivity, and can be estimated as 0.95 to account for atmospheric interferences. The method then combines probability10

masks with a series of rule based tests to identify potential cloud pixels based on the cloud spectral behaviour. Cloud shadows

are modelled based upon estimating cloud height based on temperature, view angle and solar illumination geometry reported

in the metadata files (Huang et al., 2010; Zhu and Woodcock, 2012). In addition to cloud shadows, Fmask version (3.2.1)

used here also exploits the Landsat 8 1380 nm wavelength for the detection of the cirrus clouds (Fig. A1). This wavelength

present on other lower spatial resolution sensors is strongly absorbed by the water vapour in the (lower) atmosphere therefore15

only high cirrus clouds where water vapour is low will reflect solar radiation in this wavelength. As discussed, associated

methods combining the information from several (15 for Tmask) successive images to improve cloud shadow detection (Zhu

and Woodcock, 2014; Goodwin et al., 2013) were not suitable, due to the localised and rapid changes investigated here.
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